fundamental in mean square - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

fundamental in mean square - translation to ρωσικά

AVERAGE OF THE SQUARES OF THE ERRORS BETWEEN ESTIMATED AND ACTUAL VALUES
Mean-squared error; Mean Squared Error; Sum of squared differences; Mean square error; Mean squared deviation; Mean square deviation

fundamental in mean square      
фундаментальный в среднеквадратическом
root-mean-square error         
STATISTICAL MEASURE
Root Mean Squared Error; RMSE; RMSD; Root-mean-square error; Normalized root mean squared deviation; NRMSD; Root mean squared error; RMS error; Root mean square deviation; Root mean square error
средняя квадратическая погрешность
root-mean-square deviation         
STATISTICAL MEASURE
Root Mean Squared Error; RMSE; RMSD; Root-mean-square error; Normalized root mean squared deviation; NRMSD; Root mean squared error; RMS error; Root mean square deviation; Root mean square error

общая лексика

среднеквадратичное отклонение

Ορισμός

ИН-КВАРТО
нареч., полигр.
В 1/4 листа (о формате издания, получаемом фальцовкой (см. ФАЛЬЦ) в два сгиба).||Ср. ИН-ОКТАВО, ИН-ПЛАНО, ИН-ФОЛИО.

Βικιπαίδεια

Mean squared error

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate. In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).

The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error approaches zero.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value). For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to standard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.

Μετάφραση του &#39fundamental in mean square&#39 σε Ρωσικά